1 Vitamin C (L-ascorbic acid) is present in fresh fruit and vegetables although prolonged cooking destroys it. The structure of ascorbic acid, C₆H₈O₆, is shown below.

(a) The amount of ascorbic acid present in a sample is determined by reacting it with a known amount of iodine. The excess iodine is then measured by titration with a solution of sodium thiosulfate, using a starch indicator. The equations for the reactions are given below.

Four 500 mg vitamin C tablets were dissolved in distilled water and the solution made up to 250 cm³ in a volumetric flask. A 25.0 cm³ portion of this solution was added to an iodine solution containing 2.00×10^{-3} moles of iodine. The resulting mixture was titrated with sodium thiosulfate solution of concentration 0.0631 mol dm⁻³. The titration was repeated and the mean (average) titre was 27.85 cm³.

(i) State the type of chemical change undergone by ascorbic acid when it reacts with iodine.

(1)

(State the colour of the solution in the flask just before the starch is added to the titration mixture and state the colour change at the end-point of the		
	titration.	(2)	
(iii) Calculate the percentage by mass of ascorbic acid in the tablets. The molar mass of ascorbic acid is 176 g mol^{-1} .	(5)	

(iv) Explain why using four tablets in 250 cm ³ of solution gives a more accurate result than two tablets in 250 cm ³ .	(1)
(b) The structure of ascorbic acid is shown again below. Vitamin C is one of the optical isomers of this structure.	
HO OH	
(i) Mark on this diagram the two chiral centres of this molecule.	(2)
(ii) How might you show that vitamin C is a single optical isomer and not a racemic mixture of the optical isomers of ascorbic acid?	(2)
(iii) Despite its name, ascorbic acid is not a carboxylic acid but it does contain an ester group. Suggest what happens to destroy vitamin C on prolonged cooking.	
	(1)

2	(a) A	reac	ted with an excess of hy measured at room temp	hydrogencarbonate, NaHCO ₃ , of drochloric acid. The volume of erature and pressure and found HCO ₃ + HCl \rightarrow NaCl + H ₂ O +	f carbon dioxide evolved to be 58.4 cm ³ .	
				s at the temperature and pressurass of sodium hydrogencarbona		
		(i)	Calculate the number o	f moles of carbon dioxide given	off.	(1)
		(ii)	Calculate the mass of s	odium hydrogencarbonate prese	ent in the impure sample.	(2)
		(iii)	Calculate the percentag answer to two significa	e purity of the sodium hydrogen nt figures.	ncarbonate. Give your	(2)

	experiment.	(1)
(ii)	Suggest why the carbon dioxide should not be collected over water in this	
(b) (1)	The total error in reading the gas syringe is ± 0.4 cm ³ . Calculate the percentage error in measuring the gas volume of 58.4 cm ³ .	(1)

3 Chlorine disinfectants are essentially solutions containing chlorine molecules and chlorate(I) ions in an equilibrium summarised by the equation

$$Cl_2(aq) + H_2O(1) \rightleftharpoons 2H^+(aq) + ClO^-(aq) + Cl^-(aq)$$
 Equation 1

The chlorine content of a disinfectant was determined using the following procedure.

- 1. 10.0 cm³ of the disinfectant was transferred to a 250 cm³ volumetric flask.
- 2. Approximately 20 cm³ of nitric acid and 20 cm³ potassium iodide solution (both in excess) were added to the volumetric flask.
- 3. The solution in the volumetric flask was made up to the mark with distilled water and then mixed thoroughly.
- 4. 10.0 cm³ portions of the solution in the volumetric flask were titrated against a solution of sodium thiosulfate, concentration 0.109 mol dm⁻³. Starch solution was added near the end-point of the titration and the mean (average) titre was 27.35 cm³.

The equations for the reactions involved in this procedure are

$$Cl_2(aq) + 2I^-(aq) \rightarrow I_2(aq) + 2Cl^-(aq)$$
 Equation
$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^-(aq) + S_4O_6^{2-}(aq)$$
 Equation 3

- (a) (i) Calculate the number of moles of sodium thiosulfate used in the titration.

- (ii) Calculate the number of moles of iodine, I_2 , that reacted in the titration (step 4).
- (iii) Hence state the number of moles of chlorine, Cl₂, in 10.0 cm³ of the solution in the volumetric flask.

(1)

(1)

(2)

(iv) Calculate the concentration of chlorine, in mol dm ⁻³ , in the original disinfectant.	
(2))
(b) Equation 1 is an example of a disproportionation reaction. Define the term 'disproportionation' and explain, by considering the relevant oxidation numbers, why	
this reaction is a disproportionation.	
(3))
(c) State the colours of the titration solution just before the starch solution is added, after	
the starch solution is added and the colour change at the end-point of the reaction.	
(2))
Colour just before adding the starch	
Colour just before adding the starch	

4 The ingredients list on the label of a commercial indigestion remedy states that each tablet contains 680 mg of calcium carbonate.					
To check this, the following experiment was carried out.					
One tablet was crushed. then added and the mixtu up to exactly 100 cm ³ wi 0.300 mol dm ³ sodium h	re was transferred th distilled water.	d to a volu 10.0 cm ³	of this so	sk. The vlution was	volume was made s titrated with
	Run	Rough	1	2	
	Final burette reading / cm ³	21.80	33.20	44.40	
	Initial burette reading / cm ³	10.00	21.80	33.20	
	Volume added / cm ³	11.80	11.40	11.20	
(a) (i) What should be	used to crush the	tablet?			(1)
(ii) Name a suitable indicator for the titration. State the colour change you would expect to see.					
Indicator					
Colour change from to					

(b) (i)	Select appropriate readings and calculate the mean titre.	(1)
(ii)	Calculate the number of moles of sodium hydroxide used.	(1)
(iii)	Use your answer to (ii) to write down the number of moles of hydrochloric acid left in 10.0 cm ³ of the solution used in the titration.	(1)
(iv)	Calculate the number of moles of hydrochloric acid left in 100 cm ³ of solution.	(1)

(v)	 50.0 cm³ of 1.00 mol dm ³ hydrochloric acid contains 0.0500 mol of hydrochloric acid. 				
	Use this and your answer to (iv) to calculate the number of moles of hydrochloric acid that reacted with the indigestion tablet.	(1)			
(vi)	The equation for the reaction between hydrochloric acid and calcium carbonate is:				
	$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$				
	Use this, and your answer to (v), to calculate the number of moles of calcium carbonate in one tablet.				
		(1)			
(vii	(i) Calculate the mass of calcium carbonate in one tablet.				
Ì	[Assume that the molar mass of CaCO ₃ is 100 g mol ¹]				
		(1)			
(viii	i) Suggest a reason, other than experimental error, why your value differs from the				
	value given on the label.	(1)			